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A B S T R A C T   

Stochastic simulation is an invaluable tool for operations-research practitioners for the performance evaluation 
of systems with random behavior and mathematically intractable performance measures. An important step in 
the development of a simulation model is input modeling, which is the selection of appropriate probability 
models that characterize the stochastic behavior of the system inputs. For example, in a queueing-system si-
mulation, input modeling includes choosing the probability distributions for stochastic interarrival and service 
times. The lack of knowledge about the true input models is an important practical challenge. The impact of the 
lack of information about the true input model on the simulation output is referred to as ‘input uncertainty’ in 
the simulation literature. Ignoring input uncertainty often leads to poor estimates of the system performance, 
especially when there is limited amount of historical data to make inference on the input models. Therefore, it is 
critically important to assess the impact of input uncertainty on the estimated performance measures in a sta-
tistically valid and computationally efficient way. The goal of this paper is to present input uncertainty research 
in stochastic simulations by providing a classification of major research streams and focusing on the new de-
velopments in recent years. We also review application papers that investigate the value of representing input 
uncertainty in the simulation of real-world stochastic systems in various industries. We provide a self-contained 
presentation of the major research streams with a special attention on the new developments in the last couple of 
years.   

1. Introduction 

Simulation is an invaluable tool for practitioners for the analysis of 
complex systems and processes. It is the method of choice when real- 
world experiments on a system are expensive to conduct or no analy-
tical formula is available to make inferences about the system under 
study. A major component of a simulation study is input modeling, 
which is the selection of probability distributions (i.e., input models) 
that characterize the stochastic behaviors of the random input variates 
in the system. For example, when simulating a queueing system, cus-
tomer arrival times and service times are usually random and need to be 
represented with probability distributions. Similarly, in an inventory 
system simulation, customer demands and lead times can be modeled as 
random variables. 

After the identification of the probability distributions and their 
parameters to represent such random input variables used to driven the 
simulation experiments, the next step in a simulation study is the 
generation of sample paths, where one generates random variates from 
the selected distributions to run the simulation. In the aforementioned 

queueing simulation for example, the customer arrival times and ser-
vice completion times are generated. The final step of the simulation 
study is the output analysis and this is where one collects and analyzes 
the simulation output data to calculate the performance measures of the 
system under study. What is important to recognize here is that the 
simulation output data, and hence the performance measures, are di-
rectly affected by the probability distributions (i.e., input models) from 
which the sample paths are generated in simulation. 

In practice, the typical approach is to select the “best” input model 
using goodness-of-fit tests, such as Anderson-Darling test or 
Kolmogorov-Smirnov test, and use the “best” distribution to execute the 
simulation [1]. This “best” distribution and its parameters, however, 
are often estimated from a limited set of historical data points and thus 
may be far from the “true” model and “true” parameters. As the number 
of historical data points approaches infinity, the selected probability 
distributions and their parameters converge to their counterparts; 
however, there can be cases where the simulation practitioner does not 
have access to large amounts of data in many applications. 

The inherent variability of the simulation output that is due to the 
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stochastic nature of the system under study is referred to as stochastic 
uncertainty; e.g., the variation of waiting times of customers in a 
queueing service system. It is well known in practice how to address 
this type of uncertainty in the form of certain measures, e.g., mean, 
variance and percentile of the performance measure can be estimated 
by simulation experiments with finite run length and replications [2]. In 
this paper, we focus on the uncertainty in the simulation output that is 
attributable to the lack of knowledge on the true input models, which is 
referred to as input uncertainty. When a parametric function is assumed 
to be known as the input model and the parameters are estimated from 
the historical data, input uncertainty takes the form of parameter un-
certainty. For the cases where the input model itself is unknown, it may 
be referred to as input-model uncertainty. Input uncertainty and input- 
model uncertainty are often used interchangeably in the literature. 

One way to reduce the stochastic uncertainty is to run more simu-
lation replications, which is possible with more computing power. 
However, input uncertainty cannot be decreased with additional si-
mulation replications. In fact, the only way to reduce it is to collect 
more input data, which could be very expensive or even impossible in 
some situations. Therefore, the quantification of input uncertainty in 
stochastic simulations has traditionally been the focus of simulation 
literature. 

The negative impacts of ignoring input uncertainty have been de-
monstrated in a variety of settings. For example, among others, [3] 
shows the danger of ignoring input uncertainty when running a 
queueing simulation[4]. show the consequences of ignoring input un-
certainty by only using the best-fit distributions for estimating service 
levels in an inventory simulation. In the following, we illustrate the 
concept of input uncertainty through a simple M/M/1 queueing system 
(Section 1.1) and an inventory system operating under an (s, S)-policy 
(Section 1.2). More specifically, in Section 1.1 we assume that the 
probability distributions for modeling the service time and the inter-
arrival time are given but the distribution parameters are unknown and 
estimated from a limited amount of historical data. Hence, we de-
monstrate the impact of parameter uncertainty in the estimation of a 
performance measure by using simulation. We further demonstrate how 
the input uncertainty can lead to an incorrect estimation of the optimal 
solution in service-level optimization. In Section 1.2, we assume that 
the input probability distribution itself is unknown and we further in-
vestigate the impact of input-model uncertainty on evaluating the 
performance of a given inventory policy. Our choice of relatively simple 
examples such as the M/M/1 queuing system and the (s, S) inventory 
system is on purpose. We show that even in these simple systems, the 
impact of input uncertainty can be significant. As the system under 
study becomes more complex (i.e., requiring a larger number of prob-
ability distributions as input models and a more complicated simulation 
logic), it is natural to expect that the impact of input uncertainty will be 
even higher. 

1.1. Example: Simulation of an M/M/1 queueing system 

Let FA and FS denote the probability distributions of the time be-
tween job arrivals and the service time of a service center, respectively, 
and suppose that they are exponential distributions with arrival rate per 
time unit and service rate = 1.5 per time unit. We consider the ex-
pected time a customer spends in the system (in the steady state) as the 
performance measure, and denote it by w(λ, θ). It is well known from 
queueing theory that =w ( , ) 1/( ). That is, the true value of this 
performance measure is equal to 1 time unit at the values of λ and θ 
specified above. 

The practical challenge is that the parameters λ and θ are unknown. 
Suppose that they are estimated from m past realizations of the inter-
arrival and service times via maximum likelihood method. Because m is 
finite (and can be quite small in many real-life situations), the point 
estimates of λ and θ will have some random error. To illustrate the 
impact of this error in the output performance measure, we take a 

frequentist approach and consider 1000 independent experiments 
consisting of generating a new set of m interarrival and service times (at 
the true parameters λ and θ). Specifically, we first generate m real- 
world data, find the maximum likelihood estimates ^ and ^ of unknown 
parameters, and then estimate the mean performance measure by using 
simulation with input parameters ^ and ^. Fig. 1 provides the histogram 
of the calculated performance measure w (^, ^) at different lengths of 
historical data, given by m ∈ {25, 50, 100}. It is worth noting that using 
the closed-form formula w (^, ^) corresponds to performing a simula-
tion of infinite length at the input parameters ^ and ^ (i.e., running the 
simulation for a long time until no stochastic uncertainty remains in the 
estimated value of the performance measure. 

This allows us to make two key observations from Fig. 1: (1) Even if 
a large amount of computing effort is put into simulation to improve the 
estimation of a performance measure, the performance-measure esti-
mate is subject to considerable amount of variability due to the un-
certainty in the point estimators of the input-distribution parameters λ 
and θ. This can only be reduced by collecting more real-world data for 
input modeling. In fact, as the number of historical data points in-
creases from =m 25 to =m 100, we observe that the uncertainty 
around the mean performance measure diminishes and converges to its 
true value of 1. (2) If the input uncertainty is not accounted for prop-
erly, more simulation effort may lead to even poor confidence intervals 
having lower coverage. For instance, Fig. 1 (top) illustrates a 95% 
confidence interval 1.16  ±  0.21 (solid black horizontal line) for the 
performance measure w(0.5, 1.5) by using the output data from only 30 
independent simulation replications obtained under the input para-
meters =^ 0.59 and =^ 1.57. Notice that this confidence interval in-
cludes the true value of the performance measure =w (0.5, 1.5) 1, which 
is illustrated as the dashed vertical line in Fig. 1. Since the half-width of 
the confidence interval decreases with more simulation replications, the 
confidence interval begins to exclude the true value of the performance 
measure as the number of simulation replications increases; e.g., see the 
adjusted confidence interval when the number of simulation replica-
tions increases from 30 to 100 (solid red horizontal line). This example 
shows that a confidence interval that does not explicitly account for 

Fig. 1. Variation in w (^, ^) over a set of 1000 experiments using historical data 
of length m (to estimate mean interarrival time and mean service time via 
maximum likelihood estimation) for each experiment. 
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input uncertainty can have poor coverage of the true performance 
measure, and it becomes even worse as more simulation is performed. 

Fig. 1 has shown that input uncertainty can lead to a poor estimate 
of a performance measure when simulation is used for performance 
evaluation. Input uncertainty may also cause a poor estimate of the 
optimal solution within the context of performance optimization. We 
illustrate this in an optimization problem based on the simple queuing 
system described above. Suppose that the service rate θ is a decision 
variable with the objective of minimizing the long-run average cost per 
time unit, while the arrival rate is still an unknown input parameter for 
the simulation model. Specifically, we consider that c1 is the cost rate 
associated with increasing service rate one unit and c2 is the cost 
charged per time unit for a service request waiting in the queue. It 
follows from queuing theory that the objective function is given by 

= +c c c( ; ) /( )1 2
2 2 . 

Fig. 2 shows the impact of input uncertainty on the optimal solution 
of the service-rate optimization problem described above for =c 51 and 

=c 12 . If the arrival rate λ was known (i.e., no input uncertainty), then 
the optimal service rate could be obtained as = argmin c* ( ; ),
which is equal to 0.86 in Fig. 2 (left) as shown as a dashed line. In this 
example, we consider that the decision maker obtains ^ by using 20 
past realizations of the inter-arrival times, and solves for 

= argmin c^ ( ; ^). Fig. 2 (left) plots the histogram of ^ obtained from 
1000 independent experiments. The variability in this histogram can be 
interpreted as the impact of input uncertainty on the optimal solution. 
Notice that the decision maker uses the exact formula for the objective 
function; if such a formula was not available and simulation had to be 
used for performance evaluation, one could expect the variability 
would be even higher, showing the importance of accounting for input 
uncertainty in simulation-based optimization. Fig. 2 (right) plots the 
histogram corresponding to the percentage difference Δ% in expected 
cost rate due to input uncertainty, i.e., 

= ×c c c% ( ( ^, ) ( *, ))/ ( *, ) 100%. This shows that the solution 
which is considered as “optimal” may lead to substantially poor per-
formance if input uncertainty is ignored. 

1.2. Example: Simulation of an inventory system 

Consider an (s, S) inventory policy with full backlogging. At the end 
of each period, the inventory position is calculated and, if it is below s, 
an order is placed at cost K to get the inventory position back up to S. 
The holding cost h is charged for each inventory unit carried to the next 
period and the purchasing cost c is charged for each ordered unit. Every 
order is delivered ℓ periods later. The demand in each period is in-
dependent and identically distributed; however, its probability dis-
tribution F is unknown in practice, leading to the problem of input 
uncertainty. We consider the steady-state expected stock-out rate (i.e., 
the fraction of the demand not supplied from stock on-hand) as the 
performance measure and denote it with w(F). The objective of the si-
mulation is to estimate w(F) under a specific (s, S) policy when F is 
unknown. 

Suppose that the length of the historical demand data is =m 20. 
Different from Section 1.1, we consider a nonparametric Bayesian input 
model to avoid making an assumption on the parametric form of F and 
also to be able to incorporate any prior information. Specifically, we 
capture the uncertainty in F with a Dirichlet process with a normal prior 
(using historical mean and variance as the distribution parameters) and 
a concentration parameter equal to 5 (i.e., this specific value of the 
parameter implies 80% weight is given to empirical distribution and 
20% weight is given to prior in the base measure of the Dirichlet pro-
cess). The Dirichlet process can be regarded as a distribution over all 
the possible demand distribution functions [5]. 

Let the true demand distribution be normal with mean 100 and 
standard deviation 30, = 1, =h 0.5, =c 2, =K 36 and 

Fig. 2. Variation in the optimal solution (left) and percentage difference from the minimum cost under no input uncertainty (right) over a set of 1000 experiments 
using historical data of length =m 20. 

Fig. 3. The illustration of the input uncertainty in w(F) due to not knowing F when there is no stochastic uncertainty (left) and in the presence of stochastic 
uncertainty (right). 
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=s S( , ) (80, 130). Fig. 3 illustrates how the uncertainty in the input 
model F propagates to the uncertainty in the performance measure w(F) 
by plotting the histogram of the performance measure estimates from 
1000 independent simulations, where each simulation is run with a 
randomly sampled distribution from the posterior distribution of F. 
Specifically, Fig. 3 (left) does this when there is no stochastic un-
certainty (this is achieved by running the simulation sufficiently long 
such that running the simulation further does not significantly affect the 
result anymore; i.e., 4000 time periods in this case). On the other hand,  
Fig. 3 (right) illustrates the more common situation with the presence of 
stochastic uncertainty by running the simulation 400 periods after a 
100-period warm-up period (because simulation can be computation-
ally intensive in practice, making it impossible to completely eliminate 
the sampling error due to simulation). The solid horizontal lines in  
Fig. 3 illustrate 95% Bayesian credible intervals for the mean perfor-
mance measure w(F). The one on the left is also referred to as the 
perfect-fidelity credible interval as the simulation perfectly determines 
the performance measure at a given input model (6). 

Different from Section 1.1, adapting a Bayesian approach treats the 
performance measure w(F) as a random variable, and the probability 
distribution of this random variable provides a direct characterization 
of input uncertainty and stochastic uncertainty. We observe that per-
fect-fidelity credible intervals are smaller than the 95% Bayesian 
credible intervals. This is because the former has no stochastic un-
certainty while the latter has both stochastic uncertainty and input 
uncertainty. It is of practical importance to be able to quantify the 
contributions of stochastic uncertainty and input uncertainty to a 
credible interval in a computationally efficient way, and thus a sig-
nificant amount of research has focused on this problem [6,7]. 

1.3. Overview and organization of the paper 

The topic of input uncertainty in stochastic simulations has gained 
growing interest in recent years. Early review papers include [8], [9], 
and [10], while more recent ones are [3], [11], [12], and [13]. As a 
rapidly growing research area, there is already a significant amount of 
new developments after these reviews have been published. In our 
paper, we aim to provide a self-contained presentation of the major 
research streams with a special attention on the new developments in 
the last couple of years. Furthermore, to the best of our knowledge, 
there is no state-of-an-art survey that explicitly discusses the operations 
research applications of the methods that address input uncertainty in 
stochastic simulations. Our review paper aims to fill this gap in the 
literature by providing an extensive review of the (i) methodological 
papers that model and analyze input uncertainty with a focus on recent 
trends, and more importantly (ii) application papers that explicitly 
model and address input uncertainty in the simulation of real-life sto-
chastic systems in various industries. Finally, we also discuss the re-
lationship between the input uncertainty literature and the fast-growing 
field of data science. 

We organize the remainder of the paper as follows. Section 2 in-
troduces a taxonomy of the simulation methods under input un-
certainty. Section 3 presents major input uncertainty quantification 
methods. Section 4 discusses sensitivity analysis methods, which can 
provide guidance on most informative data collection to efficiently 
reduce input uncertainty. In Section 5, we discuss simulation optimi-
zation research under input uncertainty. Section 6 presents simulation 
applications in various industries under input uncertainty. We conclude 
in Section 7 with a discussion on the relationship between the fast- 
growing area of data science and input uncertainty literature and di-
rections for future research. 

2. Taxonomy of the simulation methods under input uncertainty 

A simulation output is a function Y ≡ f(ω; F), where ω is an out-
come from the probability space ( , ), and F is the collection of L 

input distributions. The sample space Ω captures the possible realiza-
tions of random elements in the simulated system. One might think 
ω ∈ Ω as the realization of a sequence of independent and identically 
distributed standard uniform random variables, which are used to draw 
random variates from the input distributions and then to generate 
sample paths of the variables of interest. 

The simulation output from a single replication can be written as 
= +Y µF F F( , ) ( ) ( , ), where μ(F) is the performance measure of 

interest and ϵ(F, ω) is a mean-zero, finite-variance random variable 
representing the simulation error. For notational convenience, we drop 
the dependence of simulation output on ω, and we append a subscript j 
to it to indicate the jth independent simulation replication as in 

= +Y µF F F( ) ( ) ( ).j j

As it is seen in this representation, the simulation output data (and 
hence the performance measure of interest) is a function of the unknown 
input models F used in the simulation. The estimation of these input 
models from limited amount of historical data has an impact on the 
simulation output data, which is referred to as input uncertainty. In the 
remainder of this section, we provide a taxonomy of the methods that 
quantify input uncertainty in simulation output data. Section 2.1 
characterizes the literature based on whether the input uncertainty is 
viewed in accordance with the notions of frequentist or Bayesian sta-
tistics. Section 2.2, on the other hand, surveys the related literature 
based on whether the system response of interest is directly estimated 
by simulation runs or by a metamodel. Finally, Section 2.3 provides a 
survey of input uncertainty quantification methods when the input 
models are not necessarily parametric or independent of each other. 

2.1. Representation of input uncertainty 

The methods that quantify input uncertainty in simulation output 
data can be divided into frequentist and Bayesian approaches based on 
how the uncertainty around unknown input models and parameters is 
modeled. Let ml denote the number of independent and identically 
distributed real-world observations = …z zz ( , , )l m1 l from the lth input 
distribution. The collection of all real-world input data is denoted by 

= …z z z( , , )L1 . Both the frequentist and Bayesian approaches make use 
of the available real-world data, while the latter can also incorporate 
any subjective expert opinion on the input models in the quantification 
of the input uncertainty. For ease in presentation, we assume that F is a 
collection of L parametric distribution functions …F F( , , )L1 which are 
independent of each other. The parameters of the lth input distribution 
are denoted by θl; and = …( , , )L1 is the collection of all the input- 
distribution parameters. In general, input distributions can take a 
variety of forms (e.g., multivariate or nonparametric); Section 2.3 ex-
tends the survey of input uncertainty quantification methods to these 
cases. 

2.1.1. Frequentist approach 
Frequentist approaches assume that unknown input-model para-

meters, denoted by θc, are estimated from the past realizations of the 
input random variables by using a point estimator ^, which is a function 
of real world data z. The objective of the simulation output data ana-
lysis is to obtain the confidence interval specified by bounds qL and qU 

such that =µ q q{ ( ) [ , ]} 1c
L U ; it is common to refer to [qL, qU] 

as the (1 )100% confidence interval (CI). The simulation response 
μ( · ) is estimated from noisy simulation output data; see Section 2.2 for 
more details. Since the real-world data is one particular realization of 
many possible realizations from the true data-generation mechanism, 
the uncertainty about ^ is quantified by its sampling distribution. Then, 
the CI that accounts for the input uncertainty can be identified by in-
verting the sampling distribution of µ̂ ( ^), where µ̂ ( ) is the point es-
timate of the system response at any fixed θ. 

There are two potential limitations when we use frequentist 
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approaches [6]. First, it is often very difficult to obtain the exact sam-
pling distribution of ^ quantifying the parameter uncertainty. Instead, 
one may resort to asymptotic approximation methods, such as normal 
approximation and bootstrapping. However, the validity of these ap-
proximations can be hard to justify in practice when there is only a 
limited amount of real-world input data. Second, it is not possible for 
the frequentist approaches to take any prior information about the 
input models into account. 

Table 1 summarizes some of the papers in the literature that take a 
frequentist approach to quantify input uncertainty in the simulation 
output. The table further categorizes the papers based on the char-
acteristics of the input models and how the estimation error in the input 
models is propagated to the simulation output uncertainty. These will 
be discussed in Section 2.2 and Section 2.3. 

2.1.2. Bayesian approach 
Bayesian approaches quantify our belief of unknown input-model 

parameters θ with a random vector Θ. Before the collection of any real- 
world input data, the expert opinion on the input parameters is cap-
tured by its prior distribution πΘ(θ). This prior distribution is updated 
after the observation of the real-world input data z via the Bayes’ rule to 
obtain the posterior distribution πΘ(θ|z) of the input paramaters. One 
might think the posterior distribution of Θ as being similar to the 
sampling distribution of ^ in the frequentist approach in that both of 
them capture the uncertainty in the unknown input-distribution para-
meters. However, there are two important distinctions from the fre-
quentist approach. First, the prior distribution provides a convenient 
way to incorporate expert opinion on the input models. Second, there is 
no need to rely on the assumption regarding the availability of large 
amount of real-world input data. However, the derivation of the exact 
posterior distribution πΘ(θ|z) is often very difficult. This is why it is 
often necessary to resort to analytical approximations by using varia-
tional inference methods [33] or computational approximations by 
using Markov chain Monte Carlo (MCMC) methods [34] to obtain the 
posterior distribution πΘ(θ|z). 

As the computational budget gets larger, theoretically, MCMC can 
provide exact posterior samples of the input parameters. However, to 
the best of our knowledge, there is no rigorous way to quantify the 
approximation error introduced by the analytical approximations in 
general. 

If the system response (e.g., mean and quantile) function μ( · ) is 
known, the effect of the input uncertainty could be characterized by the 
induced posterior distribution of μ(Θ) with Θ ~ πΘ(θ|z). More speci-
fically, we could construct a (1 )100% credible interval (CrI), de-
noted by [cL, cU], which contains 1 of the probability content: 

µ c µz{ ( ) | , (·)}U - =µ c µz{ ( ) | , (·)} 1L . [6] call [cL, cU] as 
the perfect fidelity credible interval because it is the credible interval 
that does not possess any additional uncertainty due to simulation 
uncertainty and only reflects the uncertainty that is attributable to the 
input uncertainty. 

Since the system response μ( · ) is unknown in practice, it is first 
necessary to estimate it from noisy simulation experiments. Section 2.2 
reviews the methods to estimate μ( · ) under uncertainty around the 
input-distribution parameters. Table 2 presents a sample of re-
presentative papers that take a Bayesian approach to quantify input 
uncertainty in the simulation output. The table further categorizes the 
papers based on the characteristics of the input models and how the 
input uncertainty is propagated to the simulation output data. These 
will be discussed in Section 2.2 and Section 2.3. 

2.2. Propagation of input uncertainty to simulation output data 

In this section, we focus on how the system response surface μ( · ) is 
estimated. In particular, Section 2.2.1 reviews the approaches that di-
rectly estimate μ( · ) from independent simulation experiments, while  

Section 2.2.2 reviews the approaches that first identify a functional 
relationship between the input-distribution parameters and the system 
response. 

2.2.1. Direct simulation 
We suppose that the input uncertainty is quantified by B samples of 

the input models, denoted by …F F, , B(1) ( ). These samples could be 
generated by either frequentist or Bayesian approaches. In the direct 
simulation, we run simulations at each F(b) with = …b B1, 2, , and es-
timate the mean response with sample mean. Specifically, at F(b), the 
mean response μ(F(b)) is estimated by the sample mean, 

= =Y F Y¯ ( ) ,b
n j

n
j

( ) 1
1b

b where Yj represents the simulation output from 
the j-th replication and nb denotes the number of replications assigned 
to the sample of input model F(b). Then, the α/2 and (1 /2)-th order 
statistics can be used to construct the percentile interval quantifying the 
overall estimation uncertainty of the mean response μ(Fc), 

= Y YCI or CrI [ ¯ , ¯ ]B B( ( /2) ) ( (1 /2) ) (1) 

where the order statistics …Y Y Y¯ ¯ ¯ B(1) (2) ( ) and =Y Y F¯ ¯ ( )b
b( ) for 

= …b B1, 2, , . This interval accounts for both input uncertainty and 
stochastic uncertainty. It is a two-sided percentile CI if the input un-
certainty is quantified by a frequentist approach and it is a CrI if the 
input uncertainty is quantified by a Bayesian approach. Notice that we 
could consider both one- and two-sided intervals to quantify the system 
performance estimation uncertainty. Here, we use a two-sided interval 
for illustration. 

It is important to note that in addition to the quantile-based CI or 
CrI provided in (1), the normality-based confidence interval is fre-
quently used in the literature and it is indeed the basis of random effects 
model in [20] and other delta-effects based models that will be dis-
cussed in Section 3. Letting Var represent the variance of the simulation 
output data encompassing both the input uncertainty and stochastic 
uncertainty and z1 /2 represent the 1 /2 percentile of the standard 
normal distribution, the normality-based CI can be summarized as 
follows: 

±Y z Var n¯ /b b( ) 1 /2

2.2.2. Metamodel-Assisted simulation 
For complex stochastic systems, each simulation run could be 

computationally expensive. To precisely construct a percentile interval 
quantifying the system response estimation uncertainty for μ(Fc), we 
often require B be large. It could be computationally prohibitive to use 
direct simulation to precisely estimate the system response, especially 
risk measures (e.g., quantiles), at all samples of input models. Thus, 
based on a few well-selected design points, we can construct a meta-
model as an approximate response surface to efficiently propagate the 
estimation error in the input models to output uncertainty. 

Here, we suppose that the input models F can be specified by a finite 
and fixed number of input parameters or moments, denoted by . By 
abusing the notation, we want to construct a metamodel for the re-
sponse surface µ ( ). Metamodels commonly used in input uncertainty 
literature include the local linear approximation and the global 
Gaussian process metamodel. When we use the local linear approx-
imation, the simulation output can be modeled as 

= +Y e¯ ( ) T

where denotes the vector of slope paramaters and e is the estimation 
error of Ȳ . Given a few well-selected design points, denoted by , and 
simulation output, denoted by Y , the sampling distribution or the 
posterior distribution of parameters can be used to quantify the me-
tamodel uncertainty. 

When we use the global Gaussian process metamodel, we suppose 
that the underlying true mean response surface can be thought of as a 
realization of a stationary Gausssian process (GP). Then, the simulation 
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output can be modeled as 

= + +Y W¯ ( ) ( ) ( )0

where W ( ) is a mean-zero GP and ( ) N(0, ( ))2 is the error due 
to simulation uncertainty. The covariance between W ( ) and W ( )
quantifies how the knowledge of the surface at some design points af-
fects the prediction of the surface. A parametric form of the spatial 
covariance, denoted by = =W W r( , ) Cov[ ( ), ( )] ( ),2 is 
typically assumed where τ2 denotes the variance and r( · ) is a corre-
lation function that depends only on the distance . 

To efficiently estimate the impact of input uncertainty on the dis-
tribution of a detailed system output (e.g., waiting time of each cus-
tomer in the service system), [28] introduce a distributional metamodel 
to simultaneously model a sequence of system percentile curves. Sup-
pose that the underlying true percentile curve q (·)c is a realization of a 
GP, where …( , , )1 denotes the significant levels of interest. Then, the 
simulation percentile estimator can be written as 

= + +q µ W^ ( ) ( ) ( ),

for = …1, 2, , , where µ is a constant global trend and W ( ) is a 
zero-mean GP modeling the spatial dependence of the percentile curve 
q ( ). Since percentile curves with different probabilities typically 
increase or decrease simultaneously, authors model the spatial depen-
dence of percentile curves as 

=M M Z ZCov[ ( ), ( )] Cor[ ( ), ( )],1 2
2

1 2

where Z ( ) represents a zero-mean GP with variance equal to one and 
2 is the spatial variance of the αℓ-th quantile. Since the distributional 

metamodel can integrate the estimation over different percentiles, it 
can efficiently reduce the simulation estimation error. 

2.3. Characteristics of input models 

If the input process in a simulation model is univariate, stationary, 
independent and identically distributed (IID) and we have data, then a 
“simple” input model may suffice. We refer the reader to [49] for a 
review of such input models. In fact, almost all simulation input-mod-
eling software assume that the historical input data includes observa-
tions that are IID. However, in many practical situations, it is possible to 
have input processes that may exhibit dependence. In this section, we 
review the simulation literature with input models that are not in-
dependent of each other. [50] provides techniques to check whether 
dependence exists in a data set. Dependence can occur in time sequence 
or across different input processes, or both. The degree of dependence is 
typically represented with parametric models as reviewed in  
Section 2.3.1. In Section 2.3.2, we provide an overview of the non-
parametric and semi-parametric input models. 

2.3.1. Multivariate input-models with spatial or temporal dependence 
Dependent and multivariate input processes occur naturally in 

many service, communications, and manufacturing systems. [51] pro-
vide a comprehensive review on the development of multivariate input 
models which incorporate the interactions and interdependencies 
among the inputs for the stochastic simulation of such systems. Among 
others, most widely used approaches include the transformation-based 
methods Normal-To-Anything [52] and Vector-AutoRegressive-To- 
Anything [53], and copula-based models [54,55]. In particular, the 
copula-based models have the ability to capture a wide variety of de-
pendence structures by describing dependence in a more general 
manner than linear correlation. [56] review the copula-based methods 
for multivariate input-modeling in stochastic simulations with depen-
dent inputs. Specifically, they consider the cases where the dependence 
between pairs of simulation input random variables is measured by tail 
dependence (i.e., the amount of dependence in the tails of a bivariate 
distribution) and review the techniques to construct copula-based input 

models representing positive tail dependencies. Since the input corre-
lation is often induced by latent common factors in many situations 
(e.g., financial portfolio management), [55] further explore the factor 
structure of the underlying generative processes for the dependence and 
develop a flexible Gaussian copula-based multivariate input model that 
can capture important properties in the real-world high dimensional 
data and provide the insights for system risk analysis. 

2.3.2. Nonparametric and semiparametric input models 
When no standard distribution fits the data well, or making a dis-

tributional assumption is not desired, then the data itself can be used to 
build an input model. This is commonly referred to as a nonparametric 
input model [1]. For a multivariate input process, it is typically needed 
to use parametric functions to capture the dependence relationships 
even if nonparametric models (e.g., the empirical distribution func-
tions) are used as the marginal distributions of the input variable; see 
e.g., [57] and [58]. [47] use this approach in a simulation setting and 
refer to it as semiparametric input modeling. [7] introduce a semi-
parametric Bayesian framework that improves both computational and 
statistical efficiency, where both input and stochastic uncertainty are 
characterized by the posterior distributions. Without strong prior in-
formation on the input models and the system mean response surface,  
[32] propose a Bayesian nonparametric framework to quantify the 
impact from both sources of uncertainty. Nonparametric input models 
are introduced to faithfully capture the important features of the real- 
world data, and Bayesian posteriors of ible input models characterize 
the input uncertainty, which automatically accounts for both model 
selection and parameter value uncertainty. 

3. Major input uncertainty quantification methods 

In this section, we review approaches proposed for the representa-
tion of input uncertainty in stochastic simulations, including direct 
bootstrap, Bayesian Model Averaging, Delta method, metamodel-as-
sisted bootstrapping, and a robust-optimization based approach. We 
discuss each method along with its pros and cons. Fig. 4 provides a 
summary of each method discussed in this section while Table 3 com-
pares various methods and provides suggestions on when to use each 
method. We conclude this section by presenting the recent trends in 
input-uncertainty quantification. 

3.1. Direct bootstrap 

In the direct bootstrap, the empirical distribution is constructed as 
the input model estimate. The bootstrapping takes the real-world data 
as the whole population and generates B bootstrapped samples of the 
input model, denoted by …F F^ , , ^ ,

B(1) ( )
to quantify input uncertainty. 

Then, at each bootstrapped sample F̂
b( )

for = …b B1, , , we run n direct 
simulation runs to estimate the system performance with 

…Y F Y F¯ ( ^ ), , ¯ ( ^ )
B(1) ( )

. The percentile confidence interval constructed 
based on the simulation outputs at all bootstrapped samples of the input 
model is used to quantify both input uncertainty and simulation un-
certainty as shown in Equation  (1). This method dates back to [14,15]. 

The direct bootstrap is simple, easy to implement, and it does not 
require any prior information on the input model and system response 
surface. However, it has a few potential limitations. First, it could be 
computationally prohibitive because it requires n simulation runs at 
each bootstrapped input sample F̂

b( )
with = …b B1, , , and B needs to be 

large in order to construct an accurate percentile CI. Recently, [59] 
develop a subsampling framework to avoid the computational burden 
of the conventional bootstrap approach. The idea is to achieve effi-
ciency by retrieving information from the conditional performance 
measures from each replication. Recently, [60] take a different ap-
proach focusing on extracting more information from within-replica-
tion sample paths. Green simulation, which is an approach used to reuse 
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simulation outputs from past experiments, is applied at the sample path 
level to gain efficiency. Likelihood ratio method is used to implement 
the green simulation approach. The premise of the resulting procedure 
is its computational efficiency; i.e., as opposed to B × n simulation runs 
required to implement the direct bootstrap approach, only n runs are 
required. However, this approach comes with some limitations. For 
example, the likelihood function of system trajectory is unknown and 
the likelihood ratio calculations required for the implementation of the 
method could be a burden. 

Another challenge in the implementation of the direct bootstrap 
method is to decide how to allocate the limited simulation budget be-
tween B and n. This decision has direct implications on simulation 
output analysis. [61] introduce a sequential experiment design to effi-
ciently allocate the simulation resources to bootstrapped samples of 
input models which contribute most to the percentile CI bounds esti-
mation. 

Another disadvantage of the direct nonparametric bootstrap ap-
proach is that even though the underlying true distribution is con-
tinuous, empirical distribution is discrete. When we have a limited 
amount of real-world data, samples from the empirical distribution 
could overlook some important properties in the true input distribu-
tions (e.g., properties in the tails). This could cause obvious deviation 
on the simulation assessment of system performance when the simu-
lation output is highly dependent on the tail behaviors of the input 
distribution. For example, supply chain management in high-tech 

industries often requires the service levels to be close to 100% making it 
critical to model the tail-behavior of the service-levels accurately. 

3.2. Bayesian model averaging method 

In the Bayesian Model Averaging (BMA) approach, given a few 
candidate parametric families, the posterior probabilities of the candi-
date models are used to quantify input uncertainty. Likewise, the pos-
terior of distribution parameters is used to quantify the parameter un-
certainty. Then, at each posterior sample of the input model, direct 
simulation is used to estimate the system performance. The confidence 
or credible interval based on the simulation outputs at all posterior 
samples of the input model is used to quantify both input and simula-
tion uncertainty; see Equation  (1) for the percentile CI or CrI. 

The BMA approach dates back to 1970s and it is [35–37] who first 
adapts this approach to characterize the input uncertainty and para-
meter uncertainty in the analysis of simulation output data. [39,40] 
extend the work in Chick (2001) and decompose the posterior simula-
tion output variance into two terms related to parameter uncertainty 
and simulation uncertainty. [38,41] further consider the case with 
unknown input models and quantify the simulation output variance due 
to simulation uncertainty, parameter uncertainty, and model un-
certainty. [45] extend the BMA to input models with dependence by 
using the Normal-to-Anything (NORTA) input model to characterize 
correlated input processes. 

Fig. 4. Schematic representation of major input uncertainty models (partially adapted from Barton (2012)).  

Table 1 
Literature on frequentist approaches to input uncertainty.        

Propagating Estimation Error in Input Models to Output Uncertainty   

Direct Metamodel-assisted  

Characteristics of the Input Models Dependence structure Independent: [14,15], [16–18], [19], [20], [21,22], [11], [23], [24] Independent: [25], [26], [27], [28]   
Spatial: [20] Spatial: [29,30]   
Temporal: – Temporal:  

Distributional form Parametric: [16–18], [19], [23] Parametric: [25], [26], [27], [29,30]   
Non-parametric: [14,15], [20], [21,22], [11], [24], [31,32] Non-parametric:   
Semi-parametric: Semi-parametric: 
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Since the validation of Bayesian approaches does not require a large 
sample of real-world data, BMA overcomes the limitation of the direct 
bootstrap. All the information of the input model in the direct bootstrap 
only comes from the real-world data. By selecting the candidate dis-
tributions with appropriate tail behaviors, it could overcome the lim-
itation of the bootstrap, especially when the amount of the real-world 
data is limited. Also, it is straightforward for Bayesian approaches to 
incorporate the prior information about the underlying input model. 

However, BMA could have a few potential limitations. First, BMA is 
based on the assumption that all data come from one of the candidate 
distributions [62]. In other words, BMA relies on the assumption that 
all data are generated from a single true underlying parametric family. 
Without strong prior belief, it could be challenging to select the can-
didate distributions. If the selected parametric families are not mutually 
exclusive, such as exponential and Gamma distributions, it can poten-
tially lead to model identification problems. Furthermore, a single 
parametric distribution typically cannot capture the rich properties in 
the real-world data. Second, BMA does not account for the simulation 
estimation error in Bayesian sense. Since frequentist and Bayesian ap-
proaches have different perspectives on quantifying the uncertainty and 
we also assess their performance differently, it is not clear how to assess 
the CI delivered by the BMA. 

3.3. The delta method 

Different from the direct bootstrap and the BMA that are named 
based on the methodology used for quantifying the input uncertainty, 
the delta method is named following the local Taylor approximation on 
the response surface. This approach is first discussed in [63] and is 
further studied in [16–18]. 

The underlying assumption is that the distribution family of the 
input model is known. The sampling distribution of the maximum 
likelihood estimates of the input parameters is used to quantify the 
parameter uncertainty. Since it could be hard to directly get the sam-
pling distribution, the large-sample normal approximation is used to 
quantify input uncertainty. Then, the input uncertainty is propagated to 
the output through a linear approximate response surface. 

Unlike the direct bootstrap and BMA that estimate the system re-
sponse at each sample of the input model, delta method introduces an 
equation-based metamodel of the system response. Thus, it does not 
need substantial computational effort. However, a metamodel based on 
a local linear approximation is only appropriate when there is a large 
quantity of real-world data. The delta method is not suitable when the 
underlying response surface is highly non-linear and the amount of real- 
world data is limited. Second, delta method assumes that the distribu-
tion family of the input model is known. It is typically hard for standard 
parametric distributions to capture the rich properties in the real-world 
data. Another disadvantage of this method is that the simulation effort 
used to estimate the gradients of the response surface also increases 
with increasing number of input parameters. 

Motivated by the aforementioned challenges of the classical delta 
method, [64] study the use of the delta method in estimating non-
parametric input variance. The idea is to use random perturbation to 

obtain a finite difference estimator which approximates the gradient 
needed in the implementation of the delta method. Motivated from 
resampling, random perturbation uses multinomial distribution, which 
connects the approach to the infinitesimal jacknife estimator used in 
estimating the variance of bagging. 

3.4. Metamodel-Assisted bootstrap 

In the metamodel-assisted bootstrap approach, the bootstrap is used 
to quantify input uncertainty. Then, based on the simulation results at a 
few well-selected input models, Gaussian process metamodel is con-
structed to propagate the estimation error in input models to output 
uncertainty. A CI could be built to quantify both input uncertainty and 
simulation uncertainty. This approach is first proposed in [25]. 

Compared to the delta method, the use of a general-form metamodel 
does not require the input uncertainty to be small. Compared to the 
direct bootstrap and BMA, the use of a metamodel also reduces the 
impact of simulation error on the accuracy of the system performance 
estimate. However, the metamodel-assisted bootstrap requires the dis-
tribution family of the input model be known or the input model be 
specified by finite parameters/moments. Second, when the number of 
input model parameters is large (in hundreds to thousands), fitting a 
metamodel becomes challenging mainly due to the computational 
complexity of estimating the parameters as well as the large number of 
simulation runs needed to fit the model. Finally, the validity of using 
the bootstrap to quantify input uncertainty holds asymptotically. The 
finite sample performance could depend on the specific problem. 

Motivated by the shortcomings of the direct bootstrap and the me-
tamodel assisted bootstrap, [65] propose two new approaches named 
shrinkage and hierarchical bootstrap to produce direct bootstrap CIs 
that account for both input uncertainty and simulation uncertainty and 
investigate the empirical performance of the basic shrinkage CI, per-
centile shrinkage CI, basic hierarchical bootstrap CI, and percentile 
hierarchical bootstrap CI. The percentile shrinkage CI performs well 
when the number of available data, number of replications at each 
bootstrap sample, and the number of bootstrap samples are large while 
the basic hierarchical bootstrap CI shows good coverage in all cases 
regardless of the magnitude of the input data, the number of replica-
tions at each bootstrap sample as well as the number of bootstrap 
samples. 

3.5. Robust optimization approach to input uncertainty 

An alternative approach to modeling input uncertainty in stochastic 
simulations is to use a robust approach to input uncertainty. This ap-
proach is distinct from the other approaches discussed in the previous 
sections in the sense that it uses the premise of worst-case optimization 
borrowing some ideas from the well-established distributionally-robust 
optimization (DRO) literature ([66] and [67]). A typical formulation 
under input uncertainty takes the form 

h x h xmin ( ) and max ( )
x U x U (2) 

where U is the uncertainty set (usually represented in the form of 

Table 2 
Literature on Bayesian approaches to input uncertainty.        

Propagating Estimation Error in Input Models to Output Uncertainty   

Direct Metamodel-assisted  

Characteristics of the Input Models Dependence structure Independent: [35–37], [38–41], [4] Independent: [42–44], [6]   
Spatial: [45], [46], [47], [48] Spatial: –   
Temporal: – Temporal: –  

Distributional form Parametric: [35–37], [38–41], [45], [46] Parametric: [42–44], [6]   
Non-parametric: [48] Non-parametric: –   
Semi-parametric: [7,47] Semi-parametric: – 
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constraints), which captures the information and belief on the input 
model. The optimal solutions identified by these two optimization 
problems provide the best and worst-case values of the performance 
measure subject to the uncertainty imposed by U. Note that these two 
solutions are also the lower bound and the upper bound of the CI ob-
tained for the performance measure of interest. 

The robust optimization approach to input uncertainty is relatively 
new and is still a very active research area. See [12] for an overview of 
this approach and its comparison to the more traditional approaches to 
input uncertainty discussed in the previous sections. Other recent pa-
pers in this area include [68], [69,70] and [71,72]. 

There are several advantages of this approach. First, it naturally 
works under parametric and nonparametric regimes. Second, the un-
certainty set U can represent the prior beliefs in a nonparametric way 
offering more flexibility compared to the BMA approach. The approach 
can further quantify the nonparametric uncertainty of serial de-
pendency [73]. Furthermore, the robust framework has been shown to 
improve over some of the traditional approaches. For example, the 
procedure developed in [69,70] is shown to improve over the direct 
bootstrap approach and the delta method. In particular, the optimiza-
tion replaces the resampling step of the bootstrap approach leading to 
lighter computational requirements. Another advantage of the method 
is that unlike the bootstrap method, it is less sensitive to the compu-
tational budget allocation choices. Furthermore, it improves upon the 
delta method because it provides more accurate finite-sample perfor-
mance. 

However, it possesses some limitations and faces a few challenges. 
The main challenge is how to construct the uncertainty set U so that it 
will be practically meaningful and will allow computational tract-
ability. Common types of U include some constraints based on a sta-
tistical distance (i.e., Kullback-Leibler or χ2-distance) from a baseline 
distribution, constraints that specify that the moments of input model 
are within certain ranges, or some shape constraints on the distribution. 
However, it is not clear how sensitive the system response to the se-
lection of distance measure or more generally to the type of the con-
straint. Another challenge is that this framework does not allow the 
simulation practitioner to decompose the input uncertainty from the 
stochastic uncertainty. Furthermore, in general, h is nonlinear and non- 
convex in U so the optimization problem is non-convex and hard to 
solve. Developing algorithms to solve this problem accurately and in a 
reasonable time is the subject of recent work in this area (see [71,72]). 

3.6. Recent trends in input uncertainty quantification 

Risk Quantification: The traditional approach in the input-un-
certainty quantification literature is to gain inferences on the mean 
performance measures at the true but unknown input parameter. These 
inferences could be in the form of point estimates or confidence inter-
vals. [74] take a different approach and study the risk quantification of 
the mean response with the goal of providing inferences on extreme 
scenarios of mean response in all possible input models. VaR and CVaR 
are used as risk measures of the mean response and a nested Monte 
Carlo simulation is proposed to estimate them under input uncertainty. 
Consistency and asymptotic normality of the proposed nested risk es-
timators are proved. This paper uses Bayesian approach but the ap-
proach developed is applicable to other input uncertainty quantifica-
tion methods. 

Online Data: One of the main assumptions in the input-uncertainty 
quantification literature is the availability of input data all at once in a 
batch (fixed data). However, this assumption may not be valid nowa-
days. Especially with the availability of more data and more advanced 
techniques that would make data acquisition more practical, it becomes 
imperative to be able to incorporate the online data into the simulation 
for real-time decision making. Motivated by this, [75] develop an input- 
uncertainty quantification method that work efficiently with online 
data. Authors assume that the input model takes a parametric form and Ta
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use the Bayesian approach to estimate unknown input parameters from 
data. The idea is that as a new data point arrives, the Bayesian posterior 
distribution is updated. This update is done via the help of an im-
portance sampling procedure. The resulting procedure is shown to 
outperform a naive Bayesian approach in the simulation of an M/M/1 
queuing system. 

Other Approaches: Motivated by the computational challenges of the 
delta method and bootstrap method, and the additional parametric 
assumptions needed to be satisfied for the metamodeling-based ap-
proaches to work, [76] devise a simpler approach which is based on 
sectioning the input data and constructing a confidence interval based 
on a pivotal statistic. The premise of the approach is its minimal si-
mulation requirement and its reliance on minimal structural assump-
tions. The approach works for both parametric and nonparametric 
input regimes. 

4. Sensitivity analysis for input uncertainty reduction 

If the input uncertainty is too large, the next step is to try to reduce 
it through the collection of additional real-world input data. However, 
acquiring additional data could be costly. In that regard, it is important 
to determine the sample size sensitivity of each input process; i.e., how 
additional input data collection for each process contributes the most to 
the reduction of the overall input uncertainty, which can guide the most 
informative data collection. This section reviews those papers that take 
a sensitivity analysis approach for reducing the overall input un-
certainty. 

[19] propose two main analysis-of-variance (ANOVA) approaches 
based on a fixed effects model and a random effects model. In the fixed 
effects model, ANOVA is used to detect differences between endpoints 
of the confidence interval (CI) of a particular parameter, whereas in the 
random effects model, it is used to identify differences in responses with 
respect to the parameters estimated from the bootstrap samples of the 
input data. 

[42,43] propose a Bayesian approach to study the sensitivity of the 
mean response to parameter uncertainty. The asymptotic normal ap-
proximation is used to quantify the parameter uncertainty and it is 
propagated to the output by using a local linear regression model. Both 
input and response surface parameter estimation uncertainties are 
characterized by posterior distributions. Then, balancing the costs for 
collecting additional input and simulation data, given a finite budget, 
they develop an optimal data collection strategy to minimize the overall 
estimation uncertainty of the system mean response. 

[22] develop a nonparametric frequentist approach for sensitivity 
analysis. Basically, each input model is characterized by a mean and a 
variance. To study the impact of input uncertainty, they model the 
mean response surface with a separable linear regression model taking 
the first-two moments of each input model as independent variables. 
Then, the input uncertainty is quantified by bootstrapping. The con-
tribution of each input to the overall input uncertainty is estimated by 
the main effect, which means all other input models are fixed but only a 
single model is varied. The derivative of the input variance with respect 
to the sample sizes provides the value of collecting more data. Since 
both [43] and [22] approximate the system response as a linear func-
tion of the input parameters or input moments, this approximation 
error could depend on both input uncertainty and the nonlinearity of 
the true response surface. 

In the commonly used variance-based sensitivity measures, e.g.,  
[22,43], the first-order effects and the total effects, fail to sum to the 
total variance and adequately deal with the interaction effects of the 
inputs. In this context, a first-order effect measures “the expected re-
duction in variance of the output when an input is fixed to a constant” 
and total effect measures “the expected remaining variance of the 
output when all other input values are fixed.” [77]. For independent 
inputs, [78] introduces a new sensitivity measure based on Shapley 
value motivated by game theory, which can solve this issue. This 

approach is devised for a deterministic computer experiment where 
there is no stochastic uncertainty and it measures the uncertainty in the 
output allocated to each “known” input distribution. [77] further ex-
tends this measure to stochastic simulation experiments with dependent 
inputs. In addition, they propose a Monte Carlo algorithm to estimate 
the Shapley effects to avoid expensive computation when the number of 
inputs is large. 

[79] propose a Bayesian framework for global sensitivity analysis 
using the Bayesian metamodeling approach proposed in [6] for input- 
uncertainty quantification. The resulting metamodel assisted variance 
decomposition and sensitivity analysis quantifies the impact of each 
input model estimation uncertainty. The method also assesses the value 
of additional input data for each input process so that the system per-
formance is improved. The application of the method in an M/M/1/K 
queuing system and a biopharmaceutical inventory example illustrates 
its better performance compared to the methods proposed in [43] and  
[22]. 

Most of the work in sensitivity analysis has focused on the sensi-
tivity of the simulation output to the mean of the input distribution. 
More recently, [80] study the local sensitivity of simulation outputs to 
the variance of the parametric input models. Authors propose a new 
family of local sensitivity measures that are referred to as output-mean- 
with-respect-to-input-variance sensitivity measures. 

5. Simulation optimization under input uncertainty 

Simulation has been a widely used tool for comparing the perfor-
mances of large and complex systems as well as identifying the system 
with the best expected performance. For instance, in supply chain 
management, simulation could be used to compare the performances of 
several inventory policies based on the expected demand fulfillment 
probability that they can achieve or expected cost that they provide. In 
queueing applications, simulation could be used to compare the ex-
pected waiting times of several queueing systems as well as to identify 
the service time that minimizes the total expected waiting time. 

When the number of simulated systems is limited so that every 
system can be simulated, this problem is referred to as a Ranking and 
Selection (R&S) problem. A more general form of this problem where 
the solution space is continuous is called simulation optimization or 
Optimization via Simulation (OvS). Both areas are very established 
research areas; we refer the reader to [81] for an excellent review of the 
simulation optimization research. Our goal is not to perform an ex-
tensive review of the literature in this area; we rather focus on papers 
that particularly study input uncertainty in the implementation of the 
R&S and simulation optimization procedures. We review the R&S 
methods under input uncertainty in Section 5.1 and the simulation 
optimization methods under input uncertainty in Section 5.2. 

5.1. Ranking and selection 

Ranking and selection methods are used to compare and select a 
subset of systems or the “best” system according to their expected 
performance. When the goal is to select a subset of systems that per-
forms good among a finite number of alternatives, this problem is re-
ferred to as the subset-selection problem. When the interest is on esti-
mating the “best” system (i.e., the system that maximizes profit or 
minimizes cost), then the R&S procedure is called the indifference-zone 
(IZ) procedure. More specifically, the goal of an IZ procedure is to 
identify the best system with at least a probability of 1 when the 
true mean of the best is at least δ better than the second best. 

Since we run a limited number of simulation replications, the si-
mulation analyst is never certain about the order of the systems’ per-
formances. Even when we have infinite computing budget, as shown in 
the papers below, the presence of input uncertainty may dominate, and 
may have a significant impact on the performance of the R&S proce-
dures. 
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[82,83] are the first papers that look at the implications of para-
meter uncertainty on a subset-selection procedure. The authors design a 
decision rule that accounts for parameter uncertainty for a subset se-
lection procedure and provide insights into the effect of parameter 
uncertainty on the identification of the stochastic system designs whose 
sample means are within an error tolerance of the best. 

[84] consider an IZ R&S procedure where the simulation input 
models to represent the uncertain inputs belong to an “ambiguity set” 
which contains a finite number of scenarios for the underlying input 
distribution. The authors devise a robust selection-of-the-best proce-
dure which compares the alternatives based on their worst-case per-
formance among all the distributions in the ambiguity set and selects 
the decision with the best worst-case performance. [85] continue the 
study of this problem and design a two-stage selection procedure and a 
sequential selection procedure. The resulting procedures are validated 
through two queuing applications. Unlike the above two papers, [86] 
take a ambiquity-neutral approach and investigate the impact of input 
uncertainty on the IZ R&S procedures. They particularly consider the 
impact of input uncertainty on the indifference-zone parameter δ. Au-
thors conclude that in the presence of input uncertainty, for some 
competing designs, existing IZ procedures may fail to deliver a valid 
statistical guarantee of correct selection. 

Unlike the frequentist approach adapted in [84], [87] take a robust 
Bayesian approach and propose several extensions of the knowledge 
gradient policy originally proposed by [88] to deal with Bayesian R&S 
in the presence of input uncertainty. The authors assume independence 
among alternatives but consider the correlations among the perfor-
mance measures of an alternative under different input distributions. 

Another approach used to solve R&S problems concerns properly 
allocating the simulation budget to maximize the probability of cor-
rectly selecting the best system among competing designs. This is 
known as the ‘’fixed budget problem.” The most widely used method for 
the fixed budget problem is the optimal computing budget allocation 
(OCBA) procedure which allocates the simulation samples sequentially 
to maximize the probability of correct selection under a computational 
budget constraint. [89,90] consider an OCBA procedure under input 
uncertainty. More specifically, the authors take a conservative ap-
proach and devise a robust-OCBA procedure, which compares the 
system designs based on their worst-case performance and maximizes 
the probability of correct selection under the worst-case scenario. [91] 
continue the study of this problem and develop a new OCBA algorithm 
which allows the incorporation of additional input data with the hope 
of learning more about the input process. The resulting procedure 
maximizes the probability of correct selection by balancing input un-
certainty and simulation uncertainty. 

Building on the work in [84] and [90], [92] take a different ap-
proach and consider the practical case where the goal is to select the 
top m designs under input uncertainty. Selecting top m designs are 
especially relevant in engineering applications where multiple perfor-
mance measures exist for competing designs. Authors formulate an 
OCBA problem where the goal is to maximize the probability of cor-
rectly selecting the top m designs within a fixed simulation budget. A 
conservative approach is taking where competing designs are compared 
based on their worst case performance. OCBA-RM procedure is pro-
posed for allocating the budget efficiently in the presence of input 
uncertainty and is shown to be more more efficient than existing allo-
cation rules OCBA-M in [93], Proportional to Variance Allocation 
(PTV), and Equal Allocation (EA). 

Recently, [94] further look at the problem of ranking all alternatives 
in the presence of input uncertainty as opposed to ranking a subset of 
alternatives or selecting the best design. Authors propose a sequential 
ranking procedure which is based on an OCBA model. 

Motivated by several practical applications, [95] consider a “con-
strained” R&S procedure with input uncertainty. Authors formulate the 
decision problem and propose a robust selection approach where an 
uncertainty set that contains a finite number of input distributions is 

assumed. The selection problem aims to maximize the probability of 
correct selection of the best design where the objective and constraint 
of a design are represented by their worst-case performance. The op-
timal selection rule, which is called robust optimal computing 
budget allocation with constraints (ROCBA - CO) is easy to implement 
and is shown to outperform two well-known procedures EA and OCBA- 
CO, which is a typical approach in constrained R&S problems ([96]). 

The aforementioned literature on R&S procedures with input un-
certainty all assume a fixed input data set mainly because of the costs 
associated with collecting more input data. However, motivated by the 
analytical advances lately which make it easier to acquire additional 
new data, [97] relax this assumption and devise am IZ R&S procedure 
where additional data can be acquired on the spot during the im-
plementation of the R&S procedure. Authors propose a moving average 
estimator for online estimation and devise a new procedure by ex-
tending the Sequential Elimination framework. The resulting procedure 
is shown achieve the target probability of correct selection. However, it 
suffers from conservatiness and its efficiency can be improved. 

We conclude this section by noting that the “robust” approaches 
utilized in the literature may suffer from being too conservative and 
selecting a much worse design than the true optimal design. Recently,  
[98] overcome this conservatism with a procedure called input-output 
uncertainty comparisons. 

5.2. Simulation optimization 

Simulation optimization concerns the following problem 

=H x E h xmin ( ) [ ( , )],
x

where the objective function H(x) cannot be computed analytically so 
has to be evaluated via simulation and thus only sample performance h 
(x, ξ) is available. The distribution of ξ is usually unknown and is es-
timated from finite set of historical data leading to input uncertainty. 
The typical optimization method in the literature that hedges against 
the input uncertainty is the distributionally robust optimization (DRO) 
framework (see [99], [66], [100], [101], [102], and [103] among 
others). The DRO approach is a conservative approach because it uses 
the worst-case input distribution among all distributions that could be 
used to model the input data. Another extreme approach to hedge 
against input uncertainty would be to solve the optimization problem 
with all input distributions that could be used to represent the data and 
average out the results to make a final decision. This approach is easy to 
implement but is risk neutral to all possibilities. 

Motivated by the shortcomings of the simulation optimization 
methods under input uncertainty, [104] propose a new Bayesian risk- 
based optimization (BRO) framework which includes the DRO frame-
work and the averaging approach as special cases. The BRO framework 
features three different formulations based on a mean-variance frame-
work, Value-at-Risk (VaR) formulation, and Conditional-Value-at-Risk 
(CVaR) formulation. Authors show the effectiveness of the new for-
mulations on a classical M/M/1 queueing system while [105] apply the 
formulations to a newsvendor inventory setting. [106] establish the 
consistency and asymptotic normality of the objective functions and 
optimal solutions obtained under these three formulations. Recently,  
[107] optimize the BRO problem under a specific formulation and 
posterior distribution. Specifically, in order to solve the BRO problem 
more efficiently, authors propose stochastic gradient estimators and 
stochastic approximation algorithms. A two-sided market model is 
studied as an example to show the performance of the proposed algo-
rithms and to further provide insights on the choice of the BRO for-
mulation. 

Despite the success of the risk-based method, solving the risk-based 
simulation optimization problem remains as a numerical challenge.  
[108,109] make an attempt to solve the CVaR formulation using an 
extension of the gradient-based adaptive stochastic search method. The 
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resulting method allows one to optimize CVaR more accurately with 
less computational effort. 

[110] propose a Bayesian simulation optimization approach under 
input uncertainty and modify the two most popular simulation opti-
mization algorithms, Efficient Global Optimization algorithm [111] and 
the Knowledge Gradient algorithm with continuous parameters [112], 
to work in the presence of input uncertainty. Different from [87], this 
paper considers continuous set of alternatives and correlation between 
alternatives as well as input distributions. Furthermore, the goal is to 
identify the solution with the best expected performance rather than 
identifying the solution which is the best in the worst case. Building on 
the work in [110], [113] consider the case where real data collection is 
possible and devise a novel simulation optimization procedure called 
Bayesian Information Collection and Optimization, which auto-
matically determines in each iteration whether it is more beneficial to 
collect more data or to run more simulations. 

[114] modify the Efficient Global Optimization algorithm with the 
OCBA procedure to work under input uncertainty by combining the 
procedure with a stochastic kriging metamodel-assisted bootstrapping 
framework. The resulting framework is a robust simulation optimiza-
tion algorithm in the sense that it also estimates the worst-case bounds 
of the optimal solution. Authors test the proposed algorithm using an 
M/M/1 queueing model and show that it provides tighter worst-case 
bounds. 

To guide the dynamic decision making for complex stochastic sys-
tems, [31] introduce a simulation-based prediction framework. The 
prediction risk is quantified by the posterior predictive distribution 
accounting for both input uncertainty and simulation uncertainty. The 
input uncertainty is characterized by the posterior distribution of a 
flexible nonparametric input model with time dependence. Then, to 
search for the optimal operational decisions hedging against the pre-
diction uncertainty, a mini-batch stochastic gradient descent approach 
is used to efficiently employ the simulation resource. 

Finally, with the possibility of being able to collect more data to 
reduce the impact of input uncertainty, [115] consider the case where 
additional input data is available, which they refer to as “streaming 
data”. This setting creates a series of stochastic optimization problems 
parameterized by estimated input parameters, which converge to their 
true values as more data become available. Borrowing ideas from the 
area of misspecified optimization problems, authors develop a sto-
chastic approximation (SA) framework to solve these sequence of op-
timization problems. The resulting solution iterates are shown to con-
verge to the optimal solution in an expected-value sense. 

6. Applications of input uncertainty quantification 

The goal of this section is to review several application areas in 
which the importance of capturing input uncertainty in operational 
decision making has been quantified. Among the areas discussed are 
inventory control, manufacturing systems (in particular, assemble-to- 
order systems and high-tech manufacturing systems), pharmaceutical 
supply chains, biomanufacturing, and energy systems. 

6.1. Inventory control 

The impact of input uncertainty in inventory management is a re-
latively well-studied area. There are two major groups of papers pub-
lished in this area: (1) papers that investigate the impact of input un-
certainty in an inventory setting where the goal is to identify the 
inventory targets that minimize/maximize a certain objective (see  
[116,117] and [118,119]), and (2) papers that investigate the impact of 
input uncertainty on the simulation of inventory systems (see [120],  
[121], [4] and [122]). There are a number of reasons as to why the 
input data might be limited or additional data collection might be in-
feasible in this context. For example, new product offerings with short 
product life cycles make it impossible to collect large amount of 

demand realizations. Furthermore, frequently changing market condi-
tions pushes companies to use the most recent data to be able to capture 
the recent trends in the market. Brian Lewis, who is the co-founder of 
Fractal Sciences, describes this phenomenon as “big data dreams, small 
data reality”, in the January/February 2014 issue of the Analytics ma-
gazine. 

[116,117] are the first papers that study input uncertainty in the 
context of an inventory problem by focusing on the estimation of in-
ventory targets in a newsvendor setting in the presence of limited 
amount of historical demand data. Authors demonstrate the importance 
of accounting for parameter uncertainty on inventory-target estimation 
and compute inventory targets hedging against both stochastic un-
certainty and parameter uncertainty. [119] further study the impact of 
parameter uncertainty on the inventory targets delivered to maximize 
the joint demand fulfillment probability in a budget-constrained multi- 
item inventory system. 

[121] use simulation to estimate the optimal order size for a 
newsvendor inventory setting using a Bayesian demand model with the 
objective of capturing parameter uncertainty due to the estimation of 
demand parameters from limited amount of historical demand data. 
Authors use the posterior sampling algorithm introduced in [120] to 
determine the optimal order size under parameter uncertainty. In the 
numerical section of the paper, authors compare the classical approach 
of estimating the optimal order size to the proposed Bayesian approach 
in the paper and find that the classical approach is more conservative in 
estimating the service levels and it overestimates the expected profit in 
the presence of limited demand data. The discrepancy between the two 
approaches diminishes with increasing number of historical demand 
observations. 

[122] investigate the impact of parameter uncertainty in the si-
mulation of a newsvendor inventory setting with limited historical 
demand data. In particular, authors show that the 95% confidence-in-
terval length obtained for the Type-1 service level (defined as “expected 
fraction of time the demand is completely satisfied by the stock on 
hand”) and Type-2 service level (defined as “expected proportion of 
demand which is delivered without delay from the stock on hand”) 
even for the case where simulation uncertainty is negligible may be too 
wide to help the inventory manager make an informative decision. 
Collecting more demand data helps to reduce the length of the con-
fidence interval but this uncertainty never disappears completely, il-
lustrating the importance of capturing demand parameter uncertainty 
in the simulation of inventory systems. 

Although the focus in [122] is on demand parameter uncertainty, 
most of the time the demand models themselves are also unknown and 
need to be calibrated from the limited amount of historical demand 
data. Motivated by this observation, [4] consider the simulation of an 
inventory system with unknown input models and parameters and 
propose a simulation replication algorithm that jointly estimates the 
input models as well as the performance measures. The proposed al-
gorithm is built on a nonparametric Bayesian approach, which frees the 
inventory manager from making restrictive assumptions on the form of 
the input models while allowing him/her to incorporate expert opinion 
into the decision making process. The numerical section of the paper 
compares the practice of ignoring input uncertainty (by using the best- 
fit distributions or empirical distributions to represent the limited 
amount of historical demand data) to the practice of accounting for 
input uncertainty (by using the proposed algorithm in the paper) in the 
simulation of a single-product inventory system with the objective of 
estimating the Type-1 and Type-2 service levels. The paper also con-
structs credible intervals using real-world data obtained from a global 
manufacturer. 

6.2. Assemble-To-Order systems 

The research in this area is in its infancy. To the best of our 
knowledge, [123] is the only paper that focuses on an Assemble-to- 
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Order production system simulation where the demands for the end 
products and the time since the last customer arrival are correlated. 
Similar to the aforementioned inventory models, the lack of enough 
demand observations could be due to the short life products or the 
tendency of the companies use the recent demand observations to keep 
up with the market conditions. 

This paper proposes a procedure that decouples the sampling of the 
marginal distribution parameters and the correlation matrix to propa-
gate the estimation error in input models to the output uncertainty. The 
numerical section focuses on an ATO system having six components and 
three end products with unknown production time parameters and 
demand arrival-rate parameters. The following three procedures are 
evaluated based on the coverage of the confidence intervals for the 
expected per-period profit they provide: (i) a conditional analysis which 
uses the empirical distribution for the marginal distributions and esti-
mates the correlation matrix using the semi-parametric maximum 
likelihood method; (ii) bootstrap resampling method which captures 
the uncertainty only around the parameters of the marginal distribu-
tions ignoring the uncertainty around the correlation matrix; and (iii) 
the proposed procedure in the paper which accounts for the uncertainty 
around the parameters of the marginal distributions and the correlation 
matrix. Numerical results show that the conditional confidence inter-
vals provide very poor coverage while the confidence intervals obtained 
with the proposed procedure attain the desired coverage. 

6.3. Pharmaceutical supply chains 

[124] consider the new-product development process of a phar-
maceutical company. As part of this process, the company needs to 
source different biological products from different contract manu-
facturers whose reliability is unknown but estimated with a logistic 
regression from the historical data on the performance of the manu-
facturer. The reliability of the manufacturer, which is critically im-
portant for the pharmaceutical company to deliver the product on time, 
is defined as the likelihood of the manufacturer to successfully manu-
facture the biological product. The company uses simulation to estimate 
the performance of a sourcing decision and the execution of the simu-
lation requires the generation of binary random variates from the lo-
gistic regression model whose parameters are estimated from the lim-
ited amount of data. The data on the past performance of the 
manufacturer is usually limited because a single company produces 
only limited number of new products and thus works only limited 
amount of times with the same manufacturer. This paper considers the 
input uncertainty that is due to the estimation of the parameters of the 
logistics regression model used in the simulation and quantifies the 
impact of input uncertainty on the expected profit of the pharmaceu-
tical company. The paper also introduces a sampling-based algorithm 
with the goal of improving the sourcing decisions by accounting for the 
input uncertainty. The numerical experiments illustrate that ignoring 
input uncertainty in the decision-making process may lead to sub-
optimal decisions up to 90% of the time. 

[125] continue the study of the supplier failure probability under 
input uncertainty and investigate how input uncertainty is affected 
from the attributes of the historical products defined using the two 
metrics related to the similarity of the current product to the old pro-
ducts (called difference in the paper) and the standard deviation of the 
feature of the products developed by the supplier (called dispersion in 
the paper). The main takeaway from this paper is that input uncertainty 
should be considered particularly when the current product and the old 
products in the historical data are different from each other and an 
attribute does not vary much from one product to another. 

Finally, [126] study an engineer-to-order production system with 
random yield where uncertainty in the yield is modeled with a beta- 
regression model in which the mean value of the yield depends on the 
unique attributes of the engineer-to-order product. The manufacturer 
has limited amount of historical data about the past yield realizations 

and thus has to deal with the input uncertainty around the beta-re-
gression parameters. The paper investigates the impact of the input 
uncertainty on identifying the optimal batch sizes and on the expected 
cost of the manufacturer. 

6.4. Biopharmaceutical manufacturing 

Biomanufacturing is growing rapidly, and it plays a significant role 
in supporting the economy and ensuring public health. The bio-
pharmaceutical industry generated more than $300 billion in revenue 
in 2019 and more than 40% of the drug products in the development 
pipeline were biopharmaceuticals. Compared to traditional synthesized 
small molecule pharmaceuticals, biotherapeutics are manufactured in 
living cells whose biological processes are very complex and have 
highly variable outputs. The productivity and product critical quality 
attributes are determined by hundreds of critical process parameters, 
including raw materials, media compositions, feeding strategy, and 
process operational conditions. As new biotherapeutics (e.g., cell and 
gene therapies) become more and more “personalized”, the production, 
regulation procedure, analytical testing time required by biopharma-
ceuticals of complex molecular structure is lengthy, and the historical 
process observations are relatively limited in particular for drugs in 
early development stages. To guide the decision making for biomanu-
facturing, [127] develop a stochastic simulation model for biomanu-
facturing risk analysis by focusing on the production process from raw 
materials to nished drug substance. They study main sources of un-
certainty leading to batch-to-batch variation, such as raw material 
biomass, cell culture, and target protein purication, while accounting 
for input uncertainty. 

6.5. Energy systems 

Wind power as a renewable energy is gaining significant importance 
and is being integrated into smart power grids. However, the inherent 
uncertainty around the wind energy introduces certain operational 
challenges. To address this problem, [128] propose a short-term wind 
power probabilistic forecast that account for both inherent stochastic 
uncertainty and model estimation error. The resulting framework, 
which is based on a Bayesian nonparametric probabilistic forecast 
model, is shown to provide reliable wind power probabilistic forecast 
which can be utilized to support real-time risk management for smart 
power grids. 

[129] further consider the problem of power grids scheduling under 
high wind penetration. This problem is addressed in the literature with 
the use of a stochastic unit commitment (SUC) model, which ensures 
cost-efficient and reliable power grids scheduling. However, the tradi-
tional SUC model makes the implicit assumption that the statistical 
model characterizing the wind power generation uncertainty is known, 
leading to the underestimation of the input uncertainty. Furthermore, 
the sample average approximation method used to solve the SUC 
usually uses finite scenarios to approximate the expected cost and thus 
ignore the finite sampling error. Motivated by these two shortcomings 
of the existing SUC model, [129] propose a data-driven SUC model and 
further introduce a parallel computing based optimization approach, 
which provides optimal unit commitment decisions hedging against all 
sources of uncertainty including the stochastic uncertainty of the wind 
power generation, SUC input model estimation uncertainty, uncertainty 
induced to the use of finite sampling approach in the implementation of 
the sample average approximation method. 

6.6. High-Tech manufacturing systems 

[130] study the decision-making process of high-tech companies 
who are (i) dealing with high uncertainty in the supply, production, and 
demand; (ii) have access to limited amount of historical data; and (iii) 
are usually risk-averse. The paper proposes a simulation-based 
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prediction framework based on a two-stage dynamic decision model 
that accounts for input uncertainty. The proposed framework makes use 
of the metamodel-assisted approach to ensure efficient use of simula-
tion resources and also delivers a credible interval that accounts for 
both stochastic uncertainty and input uncertainty. The numerical study 
focuses on a single-item, multi-period inventory system under a con-
tinuous (Q,R) policy with the goal of estimating the risk-adjusted total 
cost incurred in a given time-period. The authors compare the proposed 
metamodel-assisted approach to the sample-average approximation 
method, which is the typical approach used in the literature to estimate 
the risk-adjusted cost objective. The results show the superiority of the 
metamodel-assisted approach as it provides much smaller estimation 
error while efficiently using the simulation budget to reduce the sto-
chastic uncertainty. 

7. Discussion and future perspectives 

This paper has reviewed the literature on input uncertainty in sto-
chastic simulations by providing a classification of major research 
streams and focusing on the new developments in recent years. We also 
review application papers that investigate the value of representing 
input uncertainty in the simulation of real-world stochastic systems in 
various industries. 

It is clear from this review that the problem of input uncertainty has 
received growing attention from the simulation researchers especially 
over the last couple of years. The future trends in this area where we 
expect to see more research developments in the coming years are the 
use of machine learning methods to better exploit the detailed simu-
lation output data to generate deeper insights on system performance 
by explicitly considering input uncertainty, the integration of online 
data to simulation or simulation-optimization for real-time decision 
making, and improving the computational efficiency of classical input- 
uncertainty quantification methods. 

Although several methodological advances have been made in this 
area, the research on the impact of input uncertainty on specific ap-
plication domains remains scarce. We expect to see that the implica-
tions of input uncertainty in several applications areas will be in-
vestigated in the near future. It would be also interesting to see how the 
existing approaches would perform for specific application domains. 
Since different application areas may call for different capabilities of 
the input uncertainty quantification methods, we believe that this 
would also shape the future of the input uncertainty research. 

It is important to note that the studies reviewed in this paper, in-
cluding computer simulation input modeling, input uncertainty quan-
tification, sensitivity analysis, simulation optimization under input 
uncertainty, are closely related to the fast-growing field of data science. 
They can facilitate the knowledge discovery of complex stochastic cyber- 
physical systems and internet-of-things (e.g., distributed manufacturing, 
supply chain, and health care processes) in the form of explanations and 
predictions. Given the heterogeneous data collected by smart devices 
connected by internet networks, the simulation model can facilitate 
data integration. The studies on computer input modeling, input un-
certainty and optimization can facilitate us to: (1) characterize the 
randomness from each sources of uncertainty, (2) capture interesting 
and robust patterns that satisfy the rich and heterogeneous data and 
data streams, (3) improve the knowledge and prediction of complex 
systems, (4) facilitate the representative digital twin development, and 
(5) guide the optimal, coherent, and robust decision making for com-
plex stochastic systems. 

Despite the existence of well-established methods to represent input 
uncertainty in a simulation study, these methods have not been in-
tegrated to the simulation software packages for general use. One ex-
tension is Simio (http://www.simio.com), where the company imple-
ments the work in [22], allowing the users to perform input analysis 
and identify which input contributes most to the overall input un-
certainty. We expect to see more collaboration between input 

uncertainty researchers and simulation software developers to allow the 
research be accessible for simulation practitioners. 
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